
Access VBA samples

This slideshow will show examples of VBA from the Access/VBA application I created for the Minnesota Astronomical Society (MAS). It
is a membership management database for the organization’s 500+ members. I chose this application as the source of VBA examples
to publish because its VBA does not reveal sensitive business information. I also had complete control over standards and
conventions, so it shows how I prefer to code. By no means does it represent the typical business processes I automate professionally.

The examples I have chosen require the least amount of explanation of business processes. These consist of code that:
• Tests user-composed SQL, including logic tests on the WHERE clause.
• Centralized error handling.
• Automatic composition of email messages.
• Simulating a mail merge in MS Word from MS Access (the reason for simulating will be explained).

Early binding or late binding?
As a rule, like most VBA developers, I use late binding for application variables when developing for business clients. It lets the app be
used with earlier versions of MS Office. However, for this project I chose to use early binding. Why?
• First, I was developing this on my own time when I was already working 50-60 hours per week. Early binding let me use intellisense

to save me from time-consuming debugging later.
• Secondly, as Microsoft says "[e]arly binding is the preferred method. It is the best [sic] performer because… there is no extra

overhead in doing a run-time lookup. In terms of overall execution speed, it is at least twice as fast as late binding.“* Because this
app would be used on someone’s home PC, I wanted to avoid memory problems and complaints of slowness. The price of usage
for any future user was to possibly upgrade MS Office.

* See https://support.microsoft.com/en-us/help/245115/using-early-binding-and-late-binding-in-automation

The SQL can be edited here when the text box
is unlocked (“Unlock to edit” button).

The user can test
changes to their SQL
by clicking this
button, which
displays a form
showing the results.

The “Means of Communication” setting below
determines which “Output for this list” options (below
right) are available for the user to make available for
this contact list definition.

VBA SAMPLE: TESTING A USER-COMPOSED/EDITED SQL STRING

Access VBA samples

In the slides that follow, we will look at the VBA behind the “Test
SQL” button (see green circle below). Besides testing the SQL for
errors by running it, the VBA will also look for logical errors. For
example, if the contact list in question is intended for emailable
people, does the SQL’s WHERE clause pull only those members
with an email address.

Access VBA samples

Variable names use prefixes
to identify their type.

Except for simple procedures and functions, all VBA code has a header.

To disable error handling during debugging and to later enable it, a
global variable, gboolError_Handling, is used.

Rather than use Exit Sub/Function in the body of my code, my convention is to always jump
to an exit routine (Exit_Now) where object closing and other clean-up can be performed.

Access VBA samples

Comments explain what each block does.

Access VBA samples

Exit routine. Rather than using “Exit Sub/Function” in the body of the procedure, we jump to here so that objects
can be closed and set to nothing. Of course, an error will occur if we try to close an object that has not been set. We
address that with “On Error Resume Next” --- a rare instance where this should be used. We then clear any errors
just before we exit the procedure.

Error handling is centralized for the most part. “procGeneric_Err_Handler” is the procedure that does this.
We will look at that in the next slide.

VBA SAMPLE: CENTRALIZED ERROR HANDLING

Access VBA samples

In the slides that follow, we will look at the centralized error handling performed by
the procedure “procGeneric_Err_Handler”, saved as “Public” in a standard module
so it is available everywhere in the application. It is called by a procedure/function’s
error handling routine --- but only if error handling has been turned on in the
application (i.e., global variable gboolError_Handling = True).

The procedure below shows how “procGeneric_Err_Handler” gets called.

Error handling is centralized for the most part. “procGeneric_Err_Handler” is the procedure that does this.
We will look at that in the next slide.

The centralized error handler we are about to look at. “procGeneric_Err_Handler” is passed several
arguments, including the line number where the error occurred.

Access VBA samples

This is the global variable that determines whether or not error handling is on. In the application we
are considering, a variable is used rather than a constant: the end user has the ability to set the value
using an admin feature in the GUI, letting the end-user do their own debugging. This was necessary
since the non-profit that uses this has no on-site maintenance person. In most business applications,
however, I would use a constant defined here.

The central error handler. As we will see on the following slides, this performs the following tasks:

• Handling specific, anticipated errors.
• Turns off Hourglass and turns on Echo and SetWarnings.
• Close any open recordsets.
• Prepare an on-screen error message for the user to see.
• Prepare an email message the user can send the off-site database maintainer (me) with details

about the error.

In other applications, I might include creating an entry in an error log table. In this instance, with
no on-site database maintainer, an error log would be pointless.

Shown below is the beginning of the standard module that contains our centralized error handler, the procedure “procGeneric_Err_Handler.”

Access VBA samples

Handle an anticipated
error: a new person
has assumed the role
of end user, but has
not configured the
admin settings for
their computer’s folder
structure.

Because this non-profit organization does not have an on-site database
maintainer, the end user needs to email me with any problems. Rather than
hard-code my email address here, I have it updatable in an Admin feature of
the GUI. At this point in the VBA, we are looking up that email address.

NOTE: I use a DLOOKUP here rather than a recordset search because the
table “admin_Settings” consists of only one record. DLOOKUP is far simpler
and has no adverse effect on speed.

Should the error have left Hourglass, Echo, and SetWarnings in a mode that would cause problems,
we reset them here. Similarly, we close inconsequential pop-up forms should they be open.

Access VBA samples

An on-screen message
for the user.

…and an email
composed that can be
sent to the designated
database maintainer.
Note the details that
are included.

There is a function for composing an
Outlook email message. The function
returns a value of True if there are no
errors. We will see this function in a
later slide.

Access VBA samples

An on-screen message
for the user.

If a recordset is left open due to an error,
it could prevent Access from closing,
forcing the user to use Task Manager to
do so. To avoid this, we call a procedure
that will close any open recordsets.

Even an error handler could
have errors. Since this is
most likely to happen to me
while I develop, I simply
report that error with a
message box and so avoid a
circular error.

Access VBA samples

In the application we are considering, there are
several occasions when an email would need to
be composed, such as to remind members of the
approaching expiration of their membership.
We have already seen when email messages are
composed to report errors to me.

Regardless of the purpose of the email, I have
my VBA call this function, right, to compose the
email. I never want to automatically send email,
however.

Note that the function includes the ability to
have attachments added.

If no errors are encountered, this function
returns a value of True.

Note that the Err_Handler of this email
generator calls the centralized error handling
code, which includes generating an email
message about the error. This would seem to be
inviting a circular error. However,
funEmail_Compose is so simple that the most
likely cause of errors would be with the
arguments that are being passed --- and any
error handling-related email messages would
have different, proven arguments.

VBA SAMPLE: GENERATING EMAIL

Access VBA samples

Beginning with Office 2010, you cannot use VBA
to initiate a mail merge in MS Word if that VBA is
being run from the same database as the mail
merge’s record source. Microsoft has not
explained this lost functionality, but it would
seem to be a security precaution (like so many
lost features that MS does acknowledge).

In the application we are considering for VBA
samples, there are several mail merges the user
needs to perform. To run those from this
application (which is also the record source for
the mail merge), I had to find an alternative to
the MS Word mail merge. I did: bookmarks.

Using named bookmarks in an MS Word
template (rather than mail merge fields) gives
the same results as before --- and actually makes
template creation and editing easier.

Although it is not necessary, I chose to identify
my bookmarks in the template using angle
brackets enclosing the bookmark name. The
visible name is merely cosmetic; it is the defined
name that drives my VBA, an excerpt of which is
shown right.

VBA SAMPLE: SIMULATING
A MAIL MERGE IN WORD

My “mail merge” template.

Excerpt of Access VBA that runs “mail merge” in Word.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

